EE-527: MicroFabrication

Wet Etching

Outline

- Isotropic Si etching
- Anisotropic Si etching
- Anisotropic GaAs etching
- Isotropic etching of SiO₂, Al, and Cr
- General features of wet chemical etching
- Selective etching and etch stops
- Interesting etch techniques
 - Junction diode etch stops
 - Field assisted etching
 - CMOS post processing

Etch Anisotropy

Isotropic etching

- Same etch rate in all directions
- Lateral etch rate is about the same as vertical etch rate
- Etch rate does not depend upon the orientation of the mask edge

Anisotropic etching

- Etch rate depends upon orientation to crystalline planes
- Lateral etch rate can be much larger or smaller than vertical etch rate, depending upon orientation of mask edge to crystalline axes
- Orientation of mask edge and the details of the mask pattern determine the final etched shape
 - Can be very useful for making complex shapes
 - Can be very surprising if not carefully thought out
 - Only certain "standard" shapes are routinely used

Etching Chemistry

- The etching process involves:
 - Transport of reactants to the surface
 - Surface reaction
 - Transport of products from the surface
- Key ingredients in any wet etchant:
 - Oxidizer
 - examples: H_2O_2 , HNO_3
 - Acid or base to dissolve oxidized surface
 - examples: H₂SO₄, NH₄OH
 - Dillutent media to transport reactants and products through
 - examples: H₂O, CH₃COOH

Redox Reactions

- Etching is inherently an electrochemical process:
 - It involves electron transfer processes as part of the surface reactions.
- The <u>oxidation number</u> is the net positive charge on a species.
- Oxidation is the process of electron loss, or increase in the oxidation number.
- Reduction is the process of electron gain, or decrease in the oxidation number.
- Redox reactions are those composed of oxidation of one or more species and simultaneous reduction of others.

- Hydrofluoric acid + \underline{N} itric acid + \underline{A} cetic acid
- Produces nearly isotropic etching of Si
- Overall reaction is:
 - Si + HNO₃ + 6HF \rightarrow H₂SiF₆ + HNO₂ + H₂O + H₂
 - Etching occurs via a redox reaction followed by dissolution of the oxide by an acid (HF) that acts as a complexing agent.
 - Points on the Si surface randomly become oxidation or reduction sites. These act like localized electrochemical cells, sustaining corrosion currents of ~100 A/cm² (relatively large).
 - Each point on the surface becomes both an anode and cathode site over time. If the time spent on each is the same, the etching will be uniform; otherwise selective etching will occur.

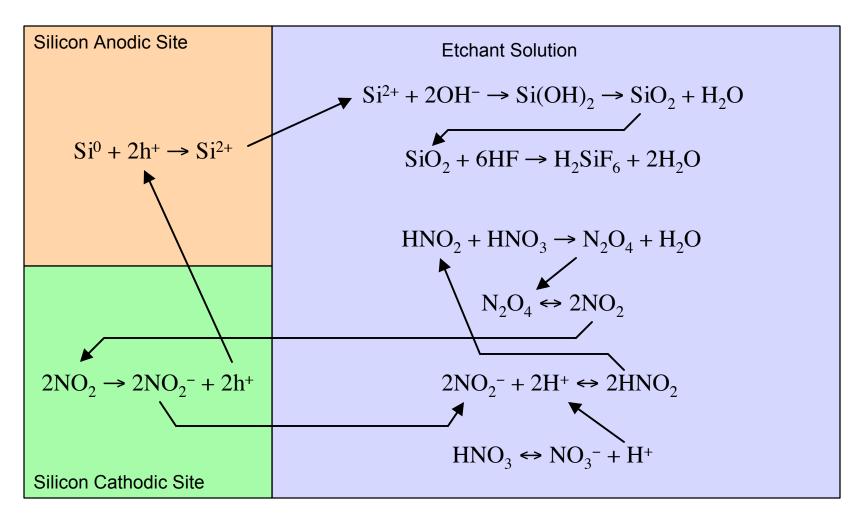
• Silicon is promoted to a higher oxidation state at an anodic site which supplies positive charge in the form of holes:

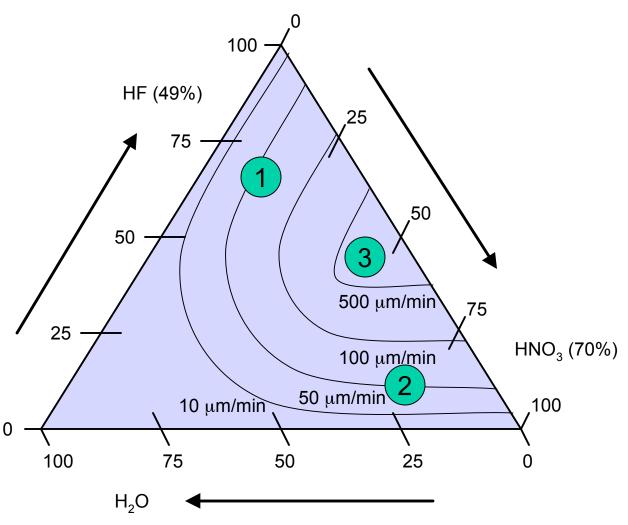
$$- Si^0 + 2h^+ \rightarrow Si^{2+}$$

• NO₂ from the nitric acid is simultaneously reduced at a cathode site which produces free holes:

$$-2NO_2 \rightarrow 2NO_2^- + 2h^+$$

• The Si²⁺ combines with OH⁻ to form SiO₂:

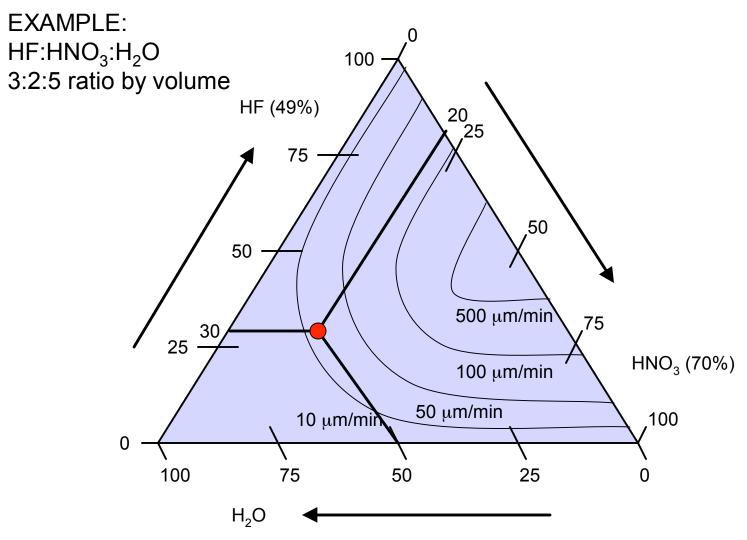

$$- Si^{2+} + 2OH^{-} \rightarrow Si(OH)_{2} \rightarrow SiO_{2} + H_{2}O$$


• The SiO₂ is then dissolved by HF to form a water soluble complex of H₂SiF₆:

$$-$$
 SiO₂ + 6HF \rightarrow H₂SiF₆ + 2H₂O

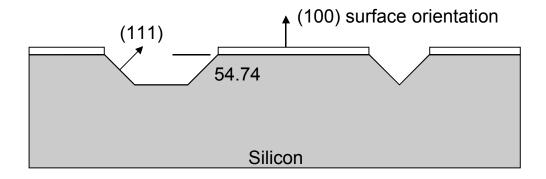
- Nitric acid has a complex behavior:
 - Normal dissociation in water (deprotonation):
 - $HNO_3 \Leftrightarrow NO_3^- + H^+$
 - Autocatalytic cycle for production of holes and HNO₂:
 - $HNO_2 + HNO_3 \rightarrow N_2O_4 + H_2O$
 - $N_2O_4 \leftrightarrow 2NO_2 \leftrightarrow 2NO_2^- + 2h^+$
 - $2NO_2^- + 2H^+ \Leftrightarrow 2HNO_2$
 - NO₂ is effectively the oxidizer of Si
 - Its reduction supplies holes for the oxidation of the Si.
 - HNO₂ is regenerated by the reaction (autocatalytic)
 - Oxidizing power of the etch is set by the amount of undissociated HNO₃.

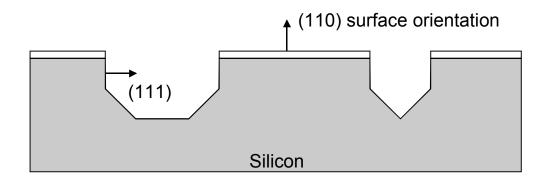
- Role of acetic acid (CH₃COOH):
 - Acetic acid is frequently substituted for water as the dilutent.
 - Acetic acid has a lower dielectric constant than water
 - 6.15 for CH₃COOH versus 81 for H₂O
 - This produces less dissociation of the HNO₃ and yields a higher oxidation power for the etch.
 - Acetic acid is less polar than water and can help in achieving proper wetting of slightly hydrophobic Si wafers.



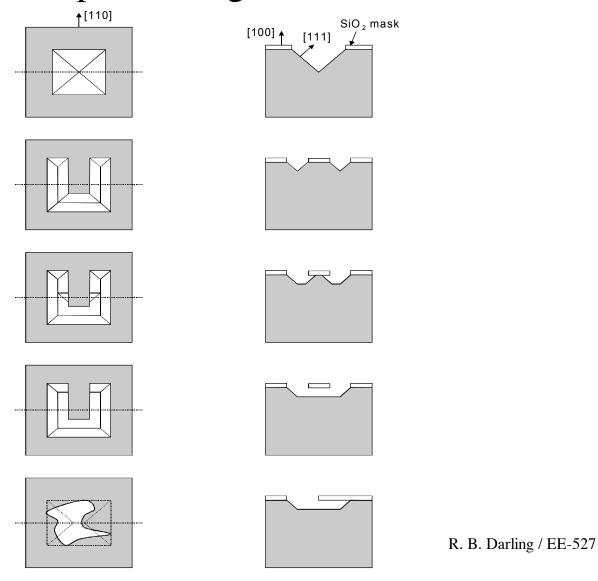
- Region 1
 - For high HF concentrations, contours are parallel to the lines of constant HNO₃; therefore the etch rate is controlled by HNO₃ in this region.
 - Leaves little residual oxide; limited by oxidation process.
- Region 2
 - For high HNO₃ concentrations, contours are parallel to the lines of constant HF; therefore the etch rate is controlled by HF in this region.
 - Leaves a residual 30-50 Angstroms of SiO₂; self-passivating;
 limited by oxide dissolution; area for polishing.
- Region 3
 - Initially not very sensitive to the amount of H₂O, then etch rate falls of sharply for 1:1 HF:HNO₃ ratios.

 R. B. Darling / EE-527


Isoetch Contours



Anisotropic Etching of Silicon - 1


- Differing hybridized (sp³) orbital orientation on different crystal planes causes drastic differences in etch rate.
- Typically, etch rates are: (100) > (110) > (111).
- The (111) family of crystallographic planes are normally the "stop" planes for anisotropic etching.
- There are 8 (111) planes along the $\pm x \pm y \pm z$ unit vectors.
- Intersections of these planes with planar bottoms produce the standard anisotropic etching structures for (100) Si wafers:
 - V-grooves
 - pyramidal pits
 - pyramidal cavities

Anisotropic Etching of Silicon - 2

Anisotropic Etching of Silicon - 3

Hydroxide Etching of Silicon

- Several hydroxides are useful:
 - KOH, NaOH, CeOH, RbOH, NH₄OH, TMAH: (CH₃)₄NOH
- Oxidation of silicon by hydroxyls to form a silicate:

• Reduction of water:

$$-4H_2O \rightarrow 4OH^- + 2H_2 + 4h^+$$

• Silicate further reacts with hydroxyls to form a water-soluble complex:

-
$$Si(OH)_2^{++} + 4OH^-$$
 → $SiO_2(OH)_2^{2-} + 2H_2O$

• Overall redox reaction is:

- Typical and most used of the hydroxide etches.
- A typical recipe is:
 - 250 g KOH
 - 200 g normal propanol
 - $-800 \text{ g H}_2\text{O}$
 - Use at 80°C with agitation
- Etch rates:
 - $\sim 1 \mu \text{m/min for (100) Si planes; stops at p}^{++} \text{ layers}$
 - ~ 14 Angstroms/hr for Si_3N_4
 - − ~20 Angstroms/min for SiO₂
- Anisotropy: (111):(110):(100) ~ 1:600:400

- Simple hardware:
 - Hot plate & stirrer.
 - Keep covered or use reflux condenser to keep propanol from evaporating.
- Presence of alkali metal (potassium, K) makes this completely incompatible with MOS or CMOS processing!
- Comparatively safe and non-toxic.

- <u>Ethylene Diamine Pyrocatechol</u>
- Also known as <u>E</u>thylene diamine <u>P</u>yrocatechol <u>W</u>ater (EPW)
- EDP etching is readily masked by SiO₂, Si₃N₄, Au, Cr, Ag, Cu, and Ta. But EDP can etch Al!
- Anisotropy: (111):(100) ~ 1:35
- EDP is very corrosive, very carcinogenic, and never allowed near mainstream electronic microfabrication.
- Typical etch rates for (100) silicon:

```
70^{\circ}C 14 μm/hr 80^{\circ}C 20 μm/hr 90^{\circ}C 30 μm/hr = 0.5 μm/min 97^{\circ}C 36 μm/hr R. B. Darling / EE-527
```

• Typical formulation:

- 1 L ethylene diamine, NH₂-CH₂-CH₂-NH₂
- 160 g pyrocatechol, C₆H₄(OH)₂
- 6 g pyrazine, C₄H₄N₂
- $-133 \text{ mL H}_2\text{O}$
- Ionization of ethylene diamine:

-
$$NH_2(CH_2)_2NH_2 + H_2O$$
 → $NH_2(CH_2)_2NH_3^+ + OH^-$

- Chelation of hydrous silica:
 - $Si(OH)_6^{2-} + 3C_6H_4(OH)_2$ → $Si(C_6H_4O_2)_3^{2-} + 6H_2O$

$$H_2$$
 H_2
 H_2
 H_2
 H_2

ethylene diamine

- Requires reflux condenser to keep volatile ingredients from evaporating.
- Completely incompatible with MOS or CMOS processing!
 - It must be used in a fume collecting bench by itself.
 - It will rust any metal in the nearby vicinity.
 - It leaves brown stains on surfaces that are difficult to remove.
- EDP has a faster etch rate on convex corners than other anisotropic etches:
 - It is generally preferred for undercutting cantilevers.
 - It tends to leave a smoother finish than other etches, since faster etching of convex corners produces a polishing action.

- EDP etching can result in deposits of polymerized Si(OH)₄ on the etched surfaces and deposits of Al(OH)₃ on Al pads.
- Moser's post EDP protocol to eliminate this:
 - 20 sec. DI water rinse
 - 120 sec. dip in 5% ascorbic acid (vitamin C) and H₂O
 - 120 sec. rinse in DI water
 - 60 sec. dip in hexane, C_6H_{14}

Amine Gallate Etching of Silicon

- Much safer than EDP
- Typical recipe:
 - 100 g gallic acid
 - 305 mL ethanolamine
 - $140 \text{ mL H}_2\text{O}$
 - 1.3 g pyrazine
 - 0.26 mL FC-129 surfactant
- Anisotropy: (111):(100): 1:50 to 1:100
- Etch rate: ~1.7 μm/min at 118°C

TMAH Etching of Silicon - 1

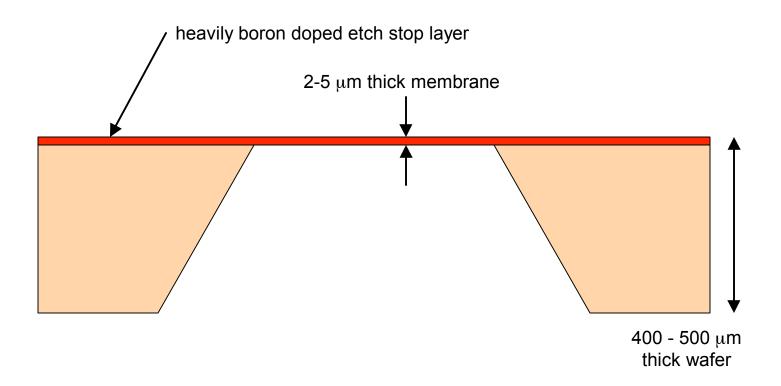
- <u>Tetra Methyl Ammonium Hydroxide</u>
- MOS/CMOS compatible:
 - No alkali metals {Li, Na, K, ...}.
 - Used in positive photoresist developers which do not use choline.
 - Does not significantly etch SiO₂ or Al! (Bond wire safe!)
- Anisotropy: (111):(100) ~ 1:10 to 1:35
- Typical recipe:
 - 250 mL TMAH (25% from Aldrich)
 - $-375 \text{ mL H}_2\text{O}$
 - 22 g Si dust dissolved into solution
 - Use at 90°C
 - Gives about 1 μm/min etch rate

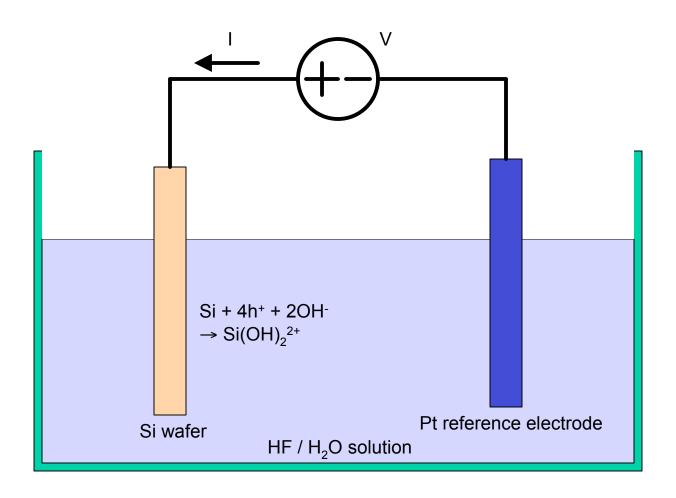
$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

tetramethyl ammonium hydroxide (TMAH)

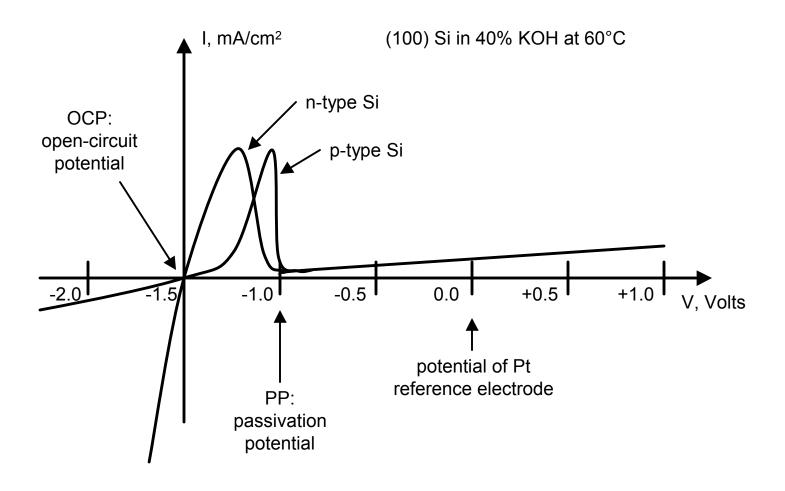
TMAH Etching of Silicon - 2

- Hydroxide etches are generally safe and predictable, but they usually involve an alkali metal which makes them incompatible with MOS or CMOS processing.
- Ammonium hydroxide (NH₄OH) is one hydroxide which is free of alkali metal, but it is really ammonia which is dissolved into water. Heating to 90°C for etching will rapidly evaporate the ammonia from solution.
- Ballasting the ammonium hydroxide with a less volatile organic solves the problem:
 - Tetramethyl ammonium hydroxide: (CH₃)₄NOH
 - Tetraethyl ammonium hydroxide: $(C_2H_5)_4$ NOH


Hydrazine and Water Etching of Silicon


- Produces anisotropic etching of silicon, also.
- Typical recipe:
 - $-100 \text{ mL } N_2H_4$
 - $-100 \text{ mL H}_2\text{O}$
 - $\sim 2 \mu \text{m/min at } 100^{\circ}\text{C}$
- Hydrazine is very dangerous!
 - A very powerful reducing agent (used for rocket fuel)
 - Flammable liquid
 - TLV = 1 ppm by skin contact
 - Hypergolic: $N_2H_4 + 2H_2O_2 \rightarrow N_2 + 4H_2O$ (explosively)
 - Pyrophoric: $N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$ (explosively)
 - Flash point = 52° C = 126° F in air.

Anisotropic Etch Stop Layers - 1


- Controlling the absolute depth of an etch is often difficult, particularly if the etch is going most of the way through a wafer.
- Etch stop layers can be used to drastically slow the etch rate, providing a stopping point of high absolute accuracy.
- Boron doping is most commonly used for silicon etching.
- Requirements for specific etches:
 - HNA etch actually speeds up for heavier doping
 - KOH etch rate reduces by $20 \times$ for boron doping > 10^{20} cm⁻³
 - NaOH etch rate reduces by $10 \times$ for boron doping > 3×10^{20} cm⁻³
 - EDP etch rate reduces by $50 \times$ for boron doping > 7×10^{19} cm⁻³
 - TMAH etch rate reduces by $10 \times$ for boron doping > 10^{20} cm⁻³

Anisotropic Etch Stop Layers - 2

- HF normally etches SiO₂ and terminates on Si.
- By biasing the Si positively, holes can be injected by an external circuit which will oxidize the Si and form hydroxides which the HF can then dissolve.
- This produces an excellent polishing etch that can be very well masked by LPCVD films of Si₃N₄.
- If the etching is performed in very concentrated HF (48% HF, 98% EtOH), then the Si does not fully oxidize when etched, and porous silicon is formed, which appears brownish.

- Increasing the wafer bias above the OCP will increase the etch rate by supplying holes which will oxidize the Si.
- Increasing the wafer bias further will reach the passivation potential (PP) where SiO₂ forms.
 - This passivates the surface and terminates the etch.
 - The HF / H₂O solution does not exhibit a PP, since the SiO₂ is dissolved by the HF.